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Optimum  Reception  in  an  Impulsive  Interference 
Environment-Part I: Coherent  Detection 

ARTHUR D. SPAULDING AND DAVID MIDDLETON, FELLOW, IEEE 

Abstruct-Because communications systems  are seldom significantly 
interfered  with  by classical white Gaussian noise, it is necessary to con- 
sider other,  appropriate (and tractable) interference models, if realistic 
estimates of system  performance are to  be obtained for the general 
spectral-use  environment. For this  purpose, Middleton’s recently devel- 
oped canonical  statistical-physical  model of “impulsive” interference is 
applied to  real-world communication channels. The principal  features 
of this  model are first  summarized,  including the statistical  relations  re- 
quired  for the  solution of signal detection problems. [Excellent agree- 
ment of these  model statistics  with  correspondingly  measured  statistics 
is also  noted.] 

The  model  for narrow-band impulsive interference (Class A noise, a 
subset of the overall model) is next specifically applied to  an  important 
class of coherent signal detection problems. Algorithms  for error  proba- 
bilities in  optimum  detection  are  then  obtained, along with perform- 
ance  bounds, for  the same error probabilities. Since it is known  that  in 
order to  gain  significant  improvement  over current receivers, the  num- 
ber of (essentially) independent samples of the received interference 
waveform must be enlarged (i.e., large “processing gains”), the  perform- 
ance  results  here  are given parametrically in the  number of samples, or 
equivalently, in  the time-bandwidth product. Performance  of current 
suboptimum receivers is then  obtained  and  compared to  the  optimum 
performance. It is shown that very substantial savings in signal power 
and/or  spectrum space  can usually be achieved by using the indicated 
optimal algorithms. 

Since physical realization of the completely optimum  detection al- 
gorithms  cannot, in general, be economically realized, the  somewhat 
more conservative, corresponding locally optimum Bayes detection 
(LOBD) receivers are derived. In general, these LOBD structures require 
adaptive, highly non-linear  filters,  preceding the conventional  correla- 
tion  detector  elements characteristic of optimum receivers for Gaussian 
interference.  Performance for these  non-linear, optimum threshold sys- 
tems is then  determined, specifically in Part I for  coherent reception. 

I. INTRODUCTION 

M AN-MADE electromagnetic  interference (or  noise) has  be- 
come a problem  of great concern in the  telecommunications 

community,  particularly  in  the face of  limited available band- 
width resources [ 13 . Such noise is also, and will become  more 
and  more so, a major limiting factor  in  the successful function- 
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ing of  communication systems.  There is now general recogni- 
tion of the heavy  price that is being  paid for  the  effects of 
man-made noise on  system  performance.  The sources of  such 
noise are virtually  unlimited-incidental radiation  from elec- 
trical devices of all sorts;  complex  out-of-band  modulation 
products  from radio communication systems,  particularly 
where many  independent users are crowded  into small geo- 
graphical areas; spurious emissions from  radio  frequency 
generators of various types;  minor  lobe  radiation  from direc- 
tional  antennas;  and so on. 

The  man-made EM environment,  and  much  of  the  natural 
one as well, is basically “impulsive”; i.e., has a highly struc- 
tured  form, characterized by significant probabilities of large 
interference levels, unlike  the  normal noise  processes inherent 
in  transmitting  and receiving elements.  This  impulsive, or 
structured  character  of  the  interference  can drastically  degrade 
the  performance of conventional systems, which are designed 
to  operate  most effectively against the usually  assumed normal 
background noise processes. 

Earlier work  has  almost  entirely focused on empirical or 
semi-empirical noise models,  suboptimum  reception,  and 
various ad  hoc  approaches peculiar to the special problems 
under investigation. [See Sec. 1 of [2], Sec. 2 of  [3],  and Sec. 
1.2 of [4] .] The  present  paper,  however, is devoted to the 
evaluation  of the  performance  of  both  optimum  and conven- 
tional receivers in a broad class of such “impulsive” (mostly 
man-made) electromagnetic  interference  for which  a canonical, 
statistical-physical model  has  recently  been  constructed and 
experimentally verified [2],  [4].  In  addition,  this  model  not 
only  avoids the  limitations  of previous models  but also  remains 
tractable  for  the analysis  required here. Specifically, of  this 
general model  only Class A interference* is considered here, 
when  both general narrow-band  and  standard digital signal 
communications,  coherently received (Part I), are employed. 

A  variety of  important  new results is obtained. These 
results fall principally into  two categories: 

(1). Canonical structures  of  optimum signal processors 
in Class A  EM-environments; 

(2) .  General performance  bounds  for  such processors and 
explicit performance  estimates  for similar, conventional. (sub- 
optimum) receivers for  the same communication tasks, and 
similar specific  digital modems. 

The technical significance of these  results stems  directly 
from  the.  fact  that  one  now  has a general and  explicitly  quanti- 
tative basis for  system design and comparison in the  pre- 
dominantly real, non-Gaussian (EM) interference  environment, 
man-made  or  natural.  Among  the  important results of  this 

*Class A interference is characterized  by  a bandwidth comparable to 
or less than  that of the receiver. See  Section I1 for a more precise de- 
scription of Class A noise. 
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analysis are the  prediction  of sizable spectral savings potent- 
ially available when  optimum receivers are  employed. In addi- 
tion,  such results  provide essential assistance in the desigq and 
application of the measuring equipment needed for  other 
important tasks of spectral management, viz, assessment of 
spectrum usage, as well as the  determination and the  quanti- 
tative  (statistical)  evaluation of  the general EM environments 
of  urban  and  other geographical regions. We emphasize that  it 
is the  quantitative  interplay  between  experimentally verified, 
analytical  model  building of  the electromagnetic environment 
and  the evaluation of system performance which provides 
essential tools  for  prediction  of  performance,  the development 
of  adequate  and  appropriate  data bases, standardization,  and 
spectral assessment needed  for effective  management of  the 
spectral-use environment. We also emphasize the  importance 
of the canonical nature  of  the results: the form of optimum 
system structure  and  the analytical character  of  performance 
evaluation  (error  probabilities) are independent  of  the explicit 
noise statistics and signal waveforms. 

Corresponding to  the above discussion, this  paper is 
organized as follows: Section I1 summarizes the  pertinent 
features  of Middleton’s Class A impulsive interference  model, 
including the statistics  required for  the  present general class of 
signal detection  problems  [2, 41 and comparisons of these 
statistics with  experiment.  In  Section 111, we develop optim’um 
detection algorithms and  obtain  exponentially  tight  bounds  on 
the performance of  the  optimum  coherent  detector.  In  Section 
IV,  the  performance  of  current  suboptimum  (but  optimum  for 
Gaussian noise) detectors is obtained  and  compared  with  the 
optimum performance  in  these highly non-Gaussian  noise 
environments.  Since the fully optimum  detector  for all input 
signal levels is difficult to realize physically, we devote Section 
V to  obtaining  the  corresponding  optimum  coherent  threshold 
detectors (i.e., locally optimum Bayes detectors  or LOBD’s) 
and evaluating  their performance. Finally, Section VI com- 
pletes Part I with a short  summary  and discussion of  the  prin- 
cipal results. 

11. THE IMPULSIVE INTERFERENCE MODEL 
(CLASS A NOISE) 

In  order to determine  the  optimum receiving system for a 
given class of signals and analyze its  performance, a mathe- 
matical  model for  the  random  interference process is required. 
That is, for  optimal system studies  and also for  determining 
the performance of some of  the existing suboptimum systems, 
more  information  about  the  interference process is required 
than can generally be obtained  by  measurement  alone.  The 
interference process as seen by  the receiver is, for  almost all 
cases of  interest, a narrowband process in  that  it can be char- 
acterized  by an envelope and a  phase.  Narrowband  noise 
processes arise whenever the receiver bandwidth is substant- 
ially less than  the receiver center  frequency.  The  problem  is to 
develop  a model  for  the  interference  that  fits all the available 
measurements; is physically  meaningful  when the  nature  of  the 
noise sources, their  distributions  in time and space,  propaga- 
tion, etc., are considered; is directly relatable to  the physical 

mechanisms giving  rise to  the  interference;  and is still simple 
enough so that  the  required  statistics can  be obtained  for solv- 
ing signal detection  problems. While various models have  been 
proposed  in the past which  meet these requirements in particu- 
lar instances, the  only general (canonical) model available to 
date which meets all the above requirements is that which has 
recently  been proposed  by Middleton [2,4] . 

For this general model we need first to distinguish between 
two classes of  interference: 

Class  A: Interference arising from sources whose emission 
spectra are comparable to  or  narrower  than  the bandpass of 
our receiver (to be termed  “narrowband interference”), and 

Class  B: Interference arising from sources whose emission 
spectra are broader than the bandpass of  our receiver (to be 
termed  “broadband interference”). 
[More precise analytic definitions are given in Section 7 (Part 
11) of  Ref.  [4] .] 

Both classes produce  “narrowband” (i.e., envelope and 
phase) interference in the receiver. [We can also, of course, 
consider  a Class C interference, defined as one which is 
composed of the sum of Class A and Class B components.] 
Examples of Class A interference include  collections of 
unwanted signals (unwanted  by  our receiver, but  wanted  by 
someone else) and (depending on our receiver bandwidth,  of 
course) the emissions of various  man-made devices (e.g., radio 
frequency dielectric heaters, soldering  machines,  plastic 
welders, etc.). Examples of Class B interference include atmos- 
pheric  noise, automotive ignition  noise,  arc welders, etc. Most 
models  proposed  in the past have considered  only cases of 
Class B interference.  The  exception to date is Middleton’s 
general model, which  includes both Class A and Class B noise 
as important special cases. Here,  however, we shall consider 
only  the Class A cases. [For a  full account  of  both Class A and 
B types, see [4], which gives the general analysis.] 

Let us now briefly  summarize the main  results of  the 
model, emphasizing the Class A component, which are needed 
in  the  solution  of  the various signal detection  and system per- 
formance  problems  treated in  this paper. This  model is the 
only general one available to date  in which the parameters of 
the model are determined explicitly by  the underlying  physical 
mechanisms (e.g., source  density,  beam-patterns, propagation 
conditions, emission waveforms, etc.). It is also the first model 
which treats  narrowband  input  interference processes (Class A) 
as  well as the  traditional  broadband  input processes (Class  B). 
A$ we shall see, the  model is also canonical in  nature, in that 
the analytical forms  of  the results do  not change with changing 
physical conditions. We include  here also some  comparisons of 
the model with measurements for Class A cases. [Comparisons 
involving Class B interference are  presented  in Section 2.4 of 
Ref,  [4] .] 

As in  earlier models,  the  present  model  postulates  the famil- 
iar Poisson mechanism for  the  initiation  of  the  interfering sig- 
nals that comprise the received waveform X ( t ) .  The received 
interfering process is represented by 

x(t) = x q ( t ,  e), (1) 
i 
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where Uj denotes  the  jth received waveform from  an  interfer- 
ing source and e represents the  random  parameters which  des- 
cribe the waveform scale and  structure.  It is next assumed that 
only one  type  of waveform, U ,  is generated, with variations  in 
the individual waveforms taken care of  by  appropriate  statis- 
tical treatment  of  the  parameters 8. 

With the  assumption,  that  the sources are Poisson-distrib- 
uted  in space and  emit  their waveforms independently  accord- 
ing to the Poisson distribution in time,  the first-order char- 
acteristic function  of X ( t )  is well known to  be [5] 

Fl(ig, t>p = exp[ (p(h)e’tu(f;”O) - 1); d l ]  , ( 2 )  

where X are the  coordinates of the source-receiver geometry 
and A is the physical domain  in  which  the sources are’located. 
The p(X)@O) is the process density,  cf. [2]. The  quantity 

p(h)dX.- A is one  of  the basic parameters  of  the  model  and 
JA p(X)(*)dh is a “counting”  functional  which adds up  the 
contributions  of  the individual  sources. The  quantity A is 
called the Impulsive Index. Specifically, A can  be shown to  be 
equal  to v,T,, where vT is the average rate  of “signal” genera- 
tion  and ?, is the  mean  duration  of a typical  interfering signal. 
The Impulsive Index measures the  amount  of  temporal overlap 
among  the waveforms of  the  interfering signals (inside the 
receiver). Large A means large overlap with a corresponding 
approach to  Gauss, while small A means highly “impulsive” or 
structured  interference. 

The  next  step is to obtain  the generic  waveform U(t) explic- 
itly  from  .the  underlying physical  mechanisms (see [6] for.this I development).  The waveform U(t) is written in  envelope  and 
phase form,  with Bo(t, X, 8) uenoting  the envelope.  This gives 
us (see [ l ,  41) 

of periods of time  during which there is no  interference in the 
receiver.** A more general model  of  the man-made  noise 
environment includes an  additive,  independent Gaussian back- 
ground  process.  This  additive background is attributable  either 
to receiver noise,  or  to  the iimit  of  a  high density Poisson 
process representing the  contributions  of  the nonresolvable 
background  sources, or  to  both.  In  this case we have for  the 
(1st-order) characteristic function  of  the sources  process 

It is found [Section 3 ,  [4] ] after  an  appropriate  steepest- 
descent modification  of  the  exponent  of (3), that  Eq. (4) can 
be approximated canonically by 

We now define the second basic parameter  of  the  model, 
r’, as  the  ratio  of  the  power in the Gaussian portion  of  the 
interference to the  power in the Poisson component, viz, 

For  computational  and discussion purposes generally, it is con- 
venient to consider the  standardized variable 

(3) Transforming (5) for  the  standardized variable z ,  we get the 
desired pdf 

where (.) denotes required  statistical averages over the  random 
epoch representing the time at which the typical j th  source 
emits,  Doppler velocities, if any,  and  the  random signal param- 
eters 8. The  characteristic  function (3) has  the same form  as 
that  obtained previously by various. investigators (Furutsu  and 
Ishida [7] , Giordano  and Haber [8], etc.). These investigators 
have made various assumptions  about  the  distributions 
required to perform  the averages indicated in (3), ,have  per- 
formed these averages, and have then  transformed  the resulting 
characteristic  functions to  obtain  their models. Each  different 
assumption,  of  course,  leads to  a different  model. In. our 
present case, we have Bo explicitly  related to  the physics  caus- 
ing the  interference. A unique  approach  of Middleton’s model 
is to, develop  expressions for  the  transform  of F1( i t ) ,  above 
without  performing  the  indicated averages explicitly,  thereby 
obtaining a  canonical model. 

For  the Class A or  “narrowband”  interference  postulated 
here,  the signal duration T,, inside the receiver, is finite, allow- 
ing us to  write the  exponent  of (3) as A (Jo(Bo g))  - A .  A con- 
sequence of  the above is that  for  the  purely Poisson process, 
Class A noise yields “gaps in time”; i.e., non-zero  probability 

\ 

where now 

Note  that pz ( z )  is  given by a  weighted sum  of Gaussian distri- 
butions  with increasing  variance. It is this result (7) for  the  pdf 
of  the (normalized) instantaneous  amplitude  of  the received 
interference process  which we will use in  subsequent  sections 
here for  the  solution of signal detection  problems. Figure 1 
shows (7) for r’ = 0.001 and various  values of A .  Note  that 
for small A ,  p z  exhibits large impulsive “tails” and as A 

**On the  other  hand,  for Class B or “broadband”  interference, sig- 
nal duration  in the receiver is infinite, so that ( AJwA ) must  be  consid- 
ered as a whole, and there  is  zero  probability of “gaps in  time,” because 
the receiver responses  always  overlap.  For  details,  see Part I1 of  Ref. 
[41. 
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I Class A Interference I 

Figure 1. The pdf of the  instantaneous  amplitude of the interference 
z (Class A) for r’ = 0.001 from (7). 

becomes large (-10) p z  approaches  the limiting case of  Gaus- 
sian interference (still narrowband, however). 

Our  next  step is to  present  the corresponding  results for  the 
envelope distribution  [4] . The Class A envelope distribution is 
obtained  from a similar expansion of  the characteristic func- 
tion,  after averaging out  the  uniformly  distributed phase.  The 
result is,  not surprisingly, for  the  standardized envelope 
( = ~ / . \ l 2 ~ ~ ~ ( 1  + r‘)) 

i.e., a  weighted  sum of Rayleigh distributions  with increasing 
variance. Figure 2 shows (9) for r’ = and various values 
of Impulsive Index A .  The  coordinates used in  Figure 2 are 
such  that a Rayleigh distribution (envelope of Gauss) plots as a 
straight  line of slope -1/2. Note,  particularly,  the impulsive 
“tails” departing  from  the  low level Gaussian background at 
the lower  probabilities. 

To handle detection problems  generally, we must initially 
formulate  them  on  the basis of  discrete random variables, 
which in turn are time-samples from  the  random process 
(waveform) representing the  interference.  For non-Gaussian 
situations  it is also generally necessary to  postulate  that these 
random variables (samples) are effectively independent, so that 
only  first order pdf  s are needed to  determine  the required nth 
order pdfs  for  the sample data vectors on which the  detection 
algorithms are based. 

We first note  that by assuming independent samples we 
obtain an upper bound on  performance  for  the  truly  optimum 
detector, since if the samples were correlated,  the  optimum 
detector would make use of  the  information  contained in this 
correlation to  “reduce” the  interference.  That is, the  perform- 
ance of  the  optimum  detector  for  correlated samples can be no 
worse than  the  performance of the  optimum  detector  for 
uncorrelated samples  (for the same continuous  detection time 
from which the discrete  samples are taken). [Reference [3] 

10~610~J.01 0.1 0.4 0.6 0.8 0.9  0.95  0.98  0.99 
P(F>€,) 

Figure 2. The envelope distribution  [prob ( E >  E o ) ]  for Class A 
interference for r’ = low3 and various A from (9) .  

10~‘lO~z I IO 20 40 60 80 90 95 98 99 
Percent of Time  Ordinate is Exceeded 

Figure 3. Comparison of measured envelope distribution  (from Bol- 
ton [ 141 , narrowband  interference) with  the Middleton  model [4 ]  , 
Class A, distribution (9). 

gives some reasonable criteria for  what  constitutes “effec- 
tively” independent samples for Class A interference.] 

To complete  our brief account of the  needed  first-order 
statistics of Middleton’s Class A interference  model  [cf. Eqs. 
(S), (7), (9)],  let us present two examples  comparing the 
model (here Eq. (9)) with  experimental  data  to  illustrate  the 
excellent  agreement obtainable  between  experiment  and 
theory.***  Figure 3 shows the measured  envelope distribu- 
tion, P(E > Eo) ,  of a narrowband impulsive interference (from 
Bolton [ 101 , Fig. 17) along with  the envelope distribution (9) 

***Similar excellent  agreement in the  more complex Class B cases is 
also obtained  [cf. Figs. 2.3-2.8 and Section 2.4 of Ref. [ 4 ]  1. 
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Figure 4. Comparison of measured envelope  distribution  (from 
Adams  et al. [ 1 3 ] ,  ore-crushing  machinery)  with  the  Middleton 
model [ 4 ] ,  Class A, distribution (9). 

for A = 0.35  and r' = 0.5 X The  comparison is seen to  
be excellent,  and we will consistently use this  example,  when, 
in  subsequent sections, we compute specific  measures of  opti- 
mum  system  performance. Figure 4 shows the measured 
envelope distribution  (from Adams et al. [9], Fig. 4-17) of 
narrowband  interference  from  ore crushing machinery along 
with  the envelope distribution (9) for A = and F' = 50. 
Again, agreement  between  experiment and theory is quite 
excellent.  Finally, we stress once  more  the canonical nature  of 
these noise models:  the  form  and  structure  of  the  distribu- 
tions, and parameters, are invariant  of any  particular noise 
source and specific  numerical values, as long as the noise is a 
Class A (or B) type. 

111. THE OPTIMUM COHERENT RECEIVER: 
STRUCTURE AND PERFORMANCE 

In  this  section we  will determine  the canonical structure  of 
the  optimum  coherent  detector  and  then  obtain explicit 
bounds on its  performance  for  the  three basic classes of 
coherent  binary digital reception,  when  the  interfering noise is 
Class A interference; i.e.,  where the emission bandwidths  of 
the  interferers are (comparable to  or) less than  that  of  the 
receiver [cf.  Section I1 preceding]. 

The  problem  of  obtaining  an  optimum decision algorithm is 
well-known to be  one of  simple-hypothesis  testing here, fol- 
lowing the Bayes' strategy  (Part  IV,  Ref.  [3]). We have the 
two  hypotheses classes: 

H i :   X ( t )  = S,(t) + Z(t), 0 < t < T 

H z :  X( t )  = S,(t) + Z(t), 0 S t < T, (10) 

where X ( t )  is our received waveform, Sl ( t )  or S2ct) is the 
desired signal completely  known  at  the receiver, Z(t)  is the 
interference process  (here Class A  noise) and (0, T) is the 
observation  period (E sample duration). 

For the explicit portions  of  the analysis, we shall consider 
the  three basic signal sets; 

S,(t) = .\/zs cos (mot), 0 Q t < T 

s z ( t )  = -a C O S  (Wet), 0 Q t < T, 

(ii). orthogonal signals: 

S1 ( t )  = m sin (mot), 0 Q t < T 

S2(t)  = cos (mot), 0 S t  < T, 

(iii). and ON-OFF keyed signals: 

S , ( t ) = m c o S ( m o t ) ,   O , < t < T  

s2(t) = 0, O Q f < T ,  

where wo T S 1 ,  and S is the signal power. 
We can represent (10) in vector  form 

X = Si + Z, j = 1 ,  2, (14) 

where X is a vector  of N samples of  our received waveform 
X ( t ) ,  x, = X(t,), and we assume that  the sample  times {in} 
are such  that  the noise samples {z,} are statistically inde- 
pendent.  The consequences of  this  postulation of independ- 
ence have been discussed in Section I1 above. 

Now,  for  the  optimum (i.e., Bayes or  minimum average 
risk) detection  strategy  chosen  here,  the  optimum  test  statistic 
is well known  to be the  likelihood  ratio / \ , (X)  = 42P,(X [ H z ) /  
41P,(X i H I ) ,  cf. [ l l ]  . In  the present Bayes test, we set  the a 
priori  probabilities  of  transmission 41 = 42 = 1/2, and  the 
threshold K = 1 .  This is the usual situation in digital transmis- 
sion systems and, i n  any case, all the results of this  section can 
be easily and directly  modified for  arbitrary K(and 41, 42). 
Then  the canonical form  of  the  likelihood  ratio  for  our case of 
coherent  reception in Class A  noise, with  the  assumption  of 
independent samples, is explicitly with  the decision process, 

decide: 

9 1, (15) 
H2 

where sln and s2, are  samples of  the signals Sl ( t )  and S2(t) 
and x, are the samples of  our received waveform. 

The  likelihood  ratio (15) cannot in general be simplified 
further. We  will show  later [Section VI how a small-signal 
assumption  can  be  used,  which greatly  reduces the  complexity 
of (15), to yield a  physically realizable receiver which is opti- 
mum  for  threshold (i.e., suitable small) signals, but which in 
general becomes suboptimum  at  the higher signal levels. The 
data processing (on-line or  off)  required  of a receiver of the 
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type (15) is straightforward  but  lengthy (viz. (15)). However, $2 1 fi /- [ 2 e-A A m  
it is usually uneconomical  to build such a  receiver,  when much 
simpler and  satisfactory  threshold devices can  be  constructed. 

Our  next  step is to  compute  the  performance  of  the  opti- 
mum  (theoretical) receiver specified by (15). For  this purpose . e - ( x n - s l n ) 2 / 2 0 m  

we shall exploit a number  of  recent results involving proba- I" 
bility bounds. We start  by  noting  that Hellman and Raviv [ 121 
make the elegant  observation that  the average probability of 
error in any binary communication  channel (K = 1) is  given by =o m !d= 

2 n = l  -m m=O m ! d w ~  

-[ e - A  
A m  

min {41~(X I H I ) ,  Y ~ P ( X  I H Z ) }  dx, (16) . e - ( r n - s 2 n ) 2 / 2 0 m 2  ] l-" dx,.  (1  9b) 

where the integral sign with a bar  denotes a  multidimensional 
integral (N dimensions). The above cannot be attacked directly 
for large N because of  the high  dimensionality  and because the 
regions of integration are quite  awkward. However, we can use 
the  inequality 

min {a, b }  < aabl-a,  (17) 

for all 0 Q a Q 1, a 2 0, b 2 0, to  obtain (K = 1) 

Let 

Now we can  write the canonical result (independent of the 
particular signal waveforms and noise parameters  employed): 

I N  

The  inequality (1 8) is  valid for  any a, 0 Q a Q 1, but we desire 
a tight  upper  bound.  That  is, we wish to use that value of a, 
namely a*, which  minimizes the right-hand side of ( 1  8). In the 
one-dimensional  case, the use of a = gives the  Bhatta- 
charyya  bound (Sec. 2.7, Van  Trees [13]  and  the use of a* 
gives the Chernoff bound (Sec. 2.7,  Van Trees [13].  The usual 
procedure is to  obtain  the Chernoff bound via the  moment 
generating function  for  the one-dimensional case. Next,  to 
assume all signal samples are the same, so that if p is the  bound 
for N = 1, pN is the  bound  for N samples (see, for  example, 
Hall [ 141 and Spaulding et  al. [ 151 ). 

This  procedure  does not necessarily correspond  to  the 
actual physical signals we have chosen, however. In  our case, 
since 41 = 4 2  = 1/2, we have 

1 

l 

and we are interested  in large N .  Equation (1 9a)  reduces to 

where 

J 

We require that 

Now we know  that I&,) is convex U on [0, 1 J (Hellman and 
Raviv, [ 121 ), and we  see that  the integral  in (21b) is sym- 
metrical about a = 1/2.  Therefore, a* = 1/2.  Our  task  has  now 
been  reduced to  the  computation of the single integral  in 
(2 lb)  with a = 1/2. [We also note  that  for  any a, I,(O) = 1 .] 
This  integral can be evaluated,  for  arbitrary p n ,  only by 
numerical  techniques. Looking at Figure 1, we see that  the 
integral is not particularly well behaved in the  neighborhood 
of y = p n  , and  that  the  normal Gaussian quadrature  approach 
to  infinite integrals  does not  apply. We use an  adaptive 
Romberg quadrature developed to  handle integrands  of our 
type (Miller [ 161 ). 

Figure 5  shows I I I z ( p n ) ,  p n  2 0, for  two cases: A = 0.35, 
r" = 0.5 X 10-3 (cf. Fig. 3) and A = 0.1, I" = Our 
bound on performance can now  be  obtained  from (21a). In 
order to  use (2la)  for large N ,  we require  specific signal sam- 
ples, ,on ,  and a means of obtaining  the values of I l I 2 ( p n )  for 
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0.01 1 1 I l 1  ! l , I l l l l ;  , , ,Il\ 1 ! 

0.001 I 

0.1 I IO 20 
Pn 

each p n .  This is done as  follows  for  our  three signal sets (1  I), 
(12),  and  (13). We let 

T 

N -  1 
t ,  = - ( n -  1); l < n S N a n d Q = w o T .  (23) 

We obtain,  then,  from (20) and (1 1)  through  (13), 

pn = cos [-% (n - l)] , antipodal, 
N -  1 

Q 
pn = d c o s  - 

I N -  1 

p n  = @j% cos [A (n - l)],  ON-OFF  keyed,  (24) 

where  for  the  ON-OFF  keyed  system, we have  also  followed 
the  convention of using  the average  signal power  in  the  two 
signals S1, S2, cf.  (13); i.e.,  one-half  the  power  of  either signal 
in  the  other cases. 

We next  develop  a  simple  upper  bound, f l I 2 b n ) ,  to 
Zl I2(pn) ,  which  can  be  quickly  evaluated  by  the  computer. 
For  the  caseA = 0.35, r’ = 0.5 X (cf. Fig. 3), we use 

il p ( p n )  = 0.42 + 0.58e-1 2 o o p n  , 0 < I p n  I < 0.1 

il / 2 ( p n )  = 0.42e-01211pn11’69, 1Pn 1>0.1.  i 
2 

(25) 

The  expression  (25) is obtained  by  adjusting (via a  computer) 
functions  of  the  form K1 exp K 2  I pn iK3 until  a  tight  upper 
bound is achieved.  This  bound  for Il12(Pn) is also shown on 
Figure 5,  but  cannot  be  distinguished  from I l I 2 ( p n ) .  Now, 
with  the  help  of  (24)  and  (25): we find  that  our  desired  tight 
upper  bound  on  performance, pe ,  is given by 

and we now use S for  the  SNR  for  the  antipodal  and  ortho- 
gonal  systems  and S/2  for  the  SNR  for  the  ON-OFF  system. 
(Since the  noise  has  been  normalized, average noise  power = 1 .) 

By varying  the  parameter Q we change  the  number  of  oscil- 
lations  of  our  desired signal in  the  detection  period T. Exten- 
sive calculations (see Spaulding  and  Middleton [3]) have 
shown  that  performance is only  weakly dependent  on  Q. 

Figure 6 shows  results for  the  three signal types  (11-13), 
(26)  for Q = 10  and N = 10; and  Figure  7, similarly, for Q = 
100,000 and N = 100. Figure 8 gives results for  the  ON-OFF 
systems  for Q = 1000  and  various  sample sizes N = 10,  100, 
and 1000. We note  that, as it  should,  the  probability of error 
P, approaches  zero as (independent)  sample size N becomes 
large. That is, we can  make Pe as small as  we like by  making 
sample-size N large enough,  which  corresponds  to  making T 
large,  or  equivalently,  by  making  the  time-bandwidth  product 
(%N) large. 

As  we have noted earlier (Eq.  (7)  et seq.),  when the  Impul- 
sive Index A becomes large (>lo),  our  interference  distribu- 
tion  approaches  the  Gaussian.  The  coherent receiver which is 
optimum  for Gauss is the  well-known  correlation  or  “matched- 
filter” receiver (if we assume appropriate  pre-whitening,  since 
we are  still  dealing  with  narrow-band interference).  Perform- 
ance is  given in terms of the signal energy, E (cf.  Eqs. 4.5 1, 
4.38,  Ref. [3]) and  the  correlation, @, between S l ( t )  and 
S,( t ) ,  viz., 

1 

where erfc  denotes  the  complimentary  error  function. Here 
@ = -1 for  antipodal signals and @ = 0 for  orthogonal signals 
and  ON-OFF  keying.  For  the  performance  bound  (21a) we 
easily obtain 

1 

2 
P, < - exp  [-Elk], 

with k = 1  for  antipodal,  2  for  orthogonal,  and  4  for  the ON- 
OFF system.  Figure  9  shows  (27)  and  (28)  for  this  Gaussian 
interference  case. 

IV.  PERFORMANCE  OF  COHERENT 
SUB-OPTIMUM RECEIVERS 

The receivers in general use today  are basically those 
designed to be  optimum  when  the  interference is  white  Gaus- 
sian noise.  These are the  well-known  correlation,  or  “matched 
filter” receivers (Hancock  and  Wintz [ 191 ). In  this  section  the 
expected  performance  of  these receivers subject to  the (highly) 
non-Gaussian Class A  interference is determined,  and  this  per- 
formance is then  compared  with  that  of  the  corresponding 
optimum  detector  derived  and  analyzed earlier  [cf. Section 1111 . 

We can  obtain  the  performance  of  the  correlation receiver 
most easily by  using  a  geometric  representation  of  the  receiv- 
ing  system (see Arthurs  and  Dym  [20]). Using this  approach, 
Halton  and  Spaulding  [21]  have  analyzed  the  performance  of 
differentially coherent  phase  (shift-keyed)  systems (DCPSK) in 
impulsive  noise.  The  performance  of  these  three  systems  [cor- 
relation  detectors,  a class of  the  optimum  coherent  systems  of 
Section 111, and  the DCPSK systems]  can be obtained  from 
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Figure 6 .  The  upper bound  on performance, ?,, (26) for  the  three Figure 8. The upper bound  on Performance, k,, (26) for  the ON- 
signaling cases (24) for N = 10 independent samples and Q = 10. OFF signaling case for Q = 1000 and N = 10, 100, and 1000, the 

number of independent samples. 
I , ,  , , I 

SNR, d B  

Figure 7. The upper bound  on performance, k,, (26) for 
signaling cases (24) for N = 100 independent samples 
100,000. 

I ,  I 

the  three 
and Q = 

Signal-to-  Noise  Ratio, dB 

Figure 9. Comparison  of  theoretical  performance in 
(from (27)) and  the upper bound (28) (dashed 

Gaussian noise 
curves). 

these  results, since antipodal signaling produces a  binary 
coherent phase shift-keying (CPSK), which is a special case of dY * 

the multilevel DCPSK results. We find, using (24) of Halton 
and Spaulding [21],  that, in general, for binary CPSK, the which gives US, finally, 
average probability of error is  given by 

where p ( € )  is the  probability density of the noise envelope 
voltage, normalized to  the rms noise and, where as  before,  the 
SNR is  given by S. 

The result (30) applies for  binary CPSK. In general, from  the 
geometrical representation  of  the  correlation receivers, [21], 
this gives immediately 

The cumulative distribution of the envelope of Class A 
interference is given by Eq. (9) and  the associated pdf by the p, - - 2 erfc v m ,  (3 1) 
negative of  the derivative of (9). Using this  in (29), interchang- 2 m=O 

ing integration  and  summation,  integrating  by  parts,  and  mak- 
ing a change of variable, we obtain where k = 1 for  antipodal signals, k = 2 for  orthogonal signals, 

e-A m A m  
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and k = 4 for  OFF-ON  keying. Figure 10 shows the calculated 
performance,  from (30) for  antipodal signals for I" = 
1 X parametric in A .  There have been  few  measure- 
ments of the  performance  of these receivers in narrowband 
interference, however. Some  measurements  of Mayer [22]  for 
receiver Performance in various types of  interfering signals, 
while not directly corresponding to  the Class A model, show 
results very similar to those calculated (Fig. 10) here for  this 
narrow-band  interference [see Fig. 4.10 of [3] 1 .  Other analy- 
ses of  suboptimum receiver performance, i.e., for  appropriate 
types of correlation  detectors, in Poisson noise (essentially 
Class B and  quantitatively  for  coherent FSK only), have been 
carried out  recently  by  Corti  et al. [ 171 , [ 181 . 

We wish now  to  compare  the  performance of  these  sub- 
optimum  systems with that of our  optimum  system [Sec. 1111. 
Figure 11 shows the  performance of the  optimum receiver 
compared  with  the  theoretical  performance of the  standard 
correlation receiver for  antipodal signaling with  the  two 
sample sizes N = 10  and 100. Our  data example  [Fig. 31 , with 
parameter A = 0.35, r' = 0.5 X is used. For  this sys- 
tem, N = 10 corresponds to  a time-bandwidth  product  10. We 
note  that  the  optimum  system does not  perform  much  better 
than  the  current  suboptimum  system  for  this  time-bandwidth 
product, when very small error probabilities (very small P,) are 
required.  For N = 100, however, we see that  the  optimum sys- 
tem  performs  substantially  better  than  the  correlation receiver, 
for  the same time-bandwidth  product.  For  example, these 
results indicate  that if a time-bandwidth  product  100 is used 
to  combat  interference (a not unusual situation),  then  the 
optimum  system requires at least 33 dB less signal power  than 
the  correlation receiver to achieve an  error rate  of or 
less. Another way of  looking  at  this is in terms  of usage of the 
spectrum resource. These results (Fig. 11)  indicate  that  for a 
given signal power and  performance  criterion (P, = 
say), the  optimum  system  can achieve this  performance  with a 
time-bandwidth  product somewhere between 10 and  20, while 
the  suboptimum  system requires  a time-bandwidth  product  of 
100. That is,  somewhere between 5 and 10 times  the actual 
required amount of spectrum space is currently being used by 
the  suboptimum system (in this example). [Note  in Fig. 11 
that  for large P,(P, - 1/2) the  suboptimum receiver appar- 
ently  performs  better  than  the  optimum receiver. This is attrib- 
utable  to  the looseness of  the  upper  bound used to  specify 
optimum  performance  at large P, (see Fig. 9, for example). Of 
course,  by  definition  the  optimum receiver must give superior 
performance vis-a-vis any  suboptimum receiver for  the same 
purpose  under  the same conditions.] 

'V. OPTIMUM COHERENT  THRESHOLD  DETECTION: 

As  we have seen  above,  even  in the simplest coherent signal- 
ing cases, the  optimum  detector is quite difficult to  realize 
physically, even though we were able to  compute a bound  on 
its  performance.  For  this reason most past efforts  to  obtain 
optimum  structure  and  performance measures have been 
directed  to  finding a detector which approaches  the limiting 
optimum Bayes detector when threshold  operations are used 

SNR,  S , d B  

Figure 10. Performance of the correlation receiver (Gaussian opti- 
mum receiver) in Class A interference (30) for r' = lo4 for various 
values of the impulsive index A .  

I 3 

Figure 11. Comparison  of  performance of correlation receiver in Class 
A interference  with the.  upper bound on optimum performance 
( 2 6 )  for Q = 1000  and N = 10 and 100 for antipodal signals. 

(namely, the LOBD locally optimum Bayes detector) i.e., 
when the desired signal becomes vanishingly small and  the 
number  of  independent samples becomes large [so that  accept- 
ably small error probabilities result].  In  this  section we derive 
the LOBD for  binary, purely coherent signals and discuss 
under what conditions  it is asymptotically  optimum.?  The 
general problem  for  both  coherent  and  incoherent  reception 
and  arbitrary additive interference was apparently first 
attacked  by  Middleton [ l  1, 231,  who showed that  the  opti- 
mum  threshold receiver must  be a nonlinear processor. Some- 
what  later,  Rudnick  [24]  examined  the same problem. Using a 
power series expansion technique similar to Middleton's, he 

?In Part 11 following, we obtain analogous  results  for some forms of 
incoherent reception. 
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obtained closed forms  for  the nonlinear optimum receivers and 
showed, in addition,  that  they  must be  adaptive.  Later canon- 
ical results have been obtained  by Middleton [25],  Antonov 
[26], Levin and Kushnir [27],  and Levin and Shinakov [28]. 

Our  present detection  situation is to decide optimally 
between  the  two  hypotheses H1, H z ,  as given by (10) earlier. 
The likelihood ratio  (for these a  priori symmetric channels, 
e.g., q1 = q2 = 1/2, K = 1,  cf.  Section 111) and decision pro- 
cess are,  for these  additive signal and noise  processes, 

where p z ( X  - Si), j = 1 , 2  is expanded  about S, = 0, for  thres- 
hold signals, according to 

with X = {x i} ,  Si = {s i i }  etc.,  for  the  component  elements  of 
received data  and signals. For  coherent signals, the usual small- 
signal assumption is 

Figure 12. Locally  optimum  (Bayes)  receiver, x*, for  purely  coherent 
binary  signals. 

canonical  receiver: its general form  and  the decision process 
are independent of any particular type of interference.  Note, 
also, that  this receiver must be adaptive; i.e., it is required to 
adjust  itself for changing interference  conditions.  It  must 
know a  priori, or  estimate, p z ( X ) .  Some approximations to 
this receiver have been  built and  tested (Bernstein and McNeill 
[3 11 ) for use where the impulsive interference is atmospheric 
noise (an example of Class B interference  [4] ). 

For  our Class A interference, Figure 13 shows the required 
nonlinearity, (-d/dx)lnpz(x), for  our  two  examples,A = 0.35, 
r‘ = 0.5 X andA = 0.1, r’ = 10-3. [we see that  it can 
be rather difficult to  implement physically.] While the  non- 
linearity  does not “Gaussianize” the  interference,  it  does sup- 
press the large “spikes”. Since N is large, the signal is small, 
and  the  interference  has been  reduced in  its  amplitude  excur- 
sions (Fig. 13),  performance  can  be estimated via the Central 
Limit Theorem.  Our previous bound (26) was quite good only 
for small P, [cf. Fig. 14,  also]. Analyzing the  performance  of 
the above locally optimum threshold detector will, therefore, 
give an estimate of performance of  the  optimum  detector  for 
small signals and large N .  

Let us start by  rewriting the  test (34)  in the  more  con- 
venient form  [cf. Fig. 121 . 

where we have ignored all signal terms  of  order 2 and higher.?? 
Inserting (33b)  into  (32), dividing the  numerator  and  denom- 
inator  by P z ( X ) ,  and assuming independent noise samples (for 
our  present analysis), we get directly 

Suppose H1 : X ( t )  = S1 ( t )  + Z(t) is true;  then we have 

for  the desired LOBD structure  and decision process. Since the 
additive constant,  unity,  does  not  affect  the  test,  one physical 
implementation of the  operation  indicated in (34) is shown  in 
Figure 12. We see that x* is simply the  standard  coherent 
receiver for Gaussian noise,  preceded  by  a  logarithmic non- 
linearity. This same result has been obtained  by Algazi and 
Lerner [29]  and Nirenberg [30],  as well as others.  The general 
result for  coherent signals is that in order  to choose the  most 
likely signal from  among  the ensemble of possible received sig- 
nals, the  optimum  threshold receiver is the  standard Gaussian 
receiver preceded  by the above nonlinearity.  Note  that this is a 

ttThis small-signal assumption is  really intuitive, and one  needs  to 

mality;cf. [25] ,   [27] ,   [32] ,   [34] ,and  [35] .  
show  that  the higher  order terms are not required for  asymptotic  opti- 

where the small-signal assumption (33b)  has again been used 
and y i  is the  output  of  the  nonlinearity  for  the  input x i .  Since 
pz’(-x) = -pz’(x) [i.e., p z ( x )  is symmetric  about x = 01, 
(36a)  reduces to 

where 
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Figure 13. The  nonlinearity, -d/dx lnpZ(z),  for  two  example cases 
of Class A interference. ' 

SNR, S, dB 

Figure 14. Comparison of  the  estimate  of  performance  for small 
signal (42) with  the  upper bound on performance (26) for Q = 
1000, N = 10, 100, and 1000 for  antipodal signals. 

Also, we have for  the  second  moment 

(37) 

Again, since p z ( x )  is even and pz ' (x)  is odd,  this gives us 

E[yi2  IH1] = L ,  

Var [vi I Hl]  = L'- sli2L2. 

After  multiplying  by sli - s Z i  and  summing over the N sam- 
ples, we obtain  the following statistics  for  the decision variable 
x* (cf. Fig. 12), under Hl : 

N 
E [ x *  I H l ]  = L (-sli2 + slis2i), 

i = l  

N 
Var [x* 1 ~ ~ 1  =z (sli - S ~ J ~ ( L  - S I ~ ~ L ? )  e 

i= 1 

' N  

= L X ( S l i  - s2i)2 
i 

(39) 

this last to be consistent  with  the  coherent  approximation, 
O(si), cf. (33b). [Note  that these results are still canonical in 
the signal waveform, as well as  the noise  statistics.] 

For  'the particular  example of Fig. 11 (and Class A data, 
Fig.' 3),  where antipodal signals are used, so that sli - s p i  = 
2 -cos moti, we find specifically that 

N 
E [X* I H I ]  = - 4SL 2 cos2 woti = -2SLN (404 

i= 1 

and 

N 

Var [x* I H11 = z (8SL cos2 moti - 16S2L2 cos4 woti) 
i= 1 

= 4SLN - 6S2L2N = 4SLN, 

SL < 1, N S  1 .  (40b) 

In similar manner, we obtain 

E[x*  I Hz]  = - E [ x *  I H1], Var [x* I H 2 ]  

= Var [x * I H l ]  (41) 

By the Central  Limit Theorem (CLT) for these large numbers, 
N ,  of  (independent) samples, we find formally that  the desired 
performance  estimate  for small signal and large N approaches 

1 

2 
P, = Prob [x* > 01 = - erfc 

(42) 

We see at  once  for  (40b)  that S must  be  quite small in  order 
for  the variance to  be positive in  this  approximation,  which is 
to  be  expected  from  the small signal assumption, especially as 
used in (37). Performance is a function  of S, N ,  and  the param- 
eter L ,  where L is given by (36c). For  our  two specific numer- 
ical examples  (cf. Fig. 13)  of Class A noise, the evaluation of 
(36c) must  be carried out  numerically. This gives [for A = 0.1 

L = 1340.  The  fact  that L is large (along with N large, required 
by  the CLT) further impels S to  be  quite small, as (40b),  for 
example, indicates.  Figure 14 shows the estimate'd perform- 

and r' = 10-31 L = 892.7  [forA = 0.3s;r' = 0.5 x 10-3]', 

:,, . 
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ance for  the threshold receiver, from (40) and  (42), along with 
the  upper  bound on the  performance  of  the  optimum  detec- 
tor calculated  earlier for our case 0.35, l-” = 0.5 X 

As Levin et al. [32] have pointed  out, reliable detection 
when the signal is weak  requires us to  increase the sample size 
N .  This’  leads to an increase in the  effect  of  terms of higher 
order, which are discarded  in the synthesis  of  locally optimal 
detectors.  That is, for a given small signal level, the locally 
optimal detectors become increasingly ‘suboptimum as N 
increases. This effect can be mitigated by using as a bias term 
E( 1 H l , z )  of the  next-order  terms in s l i ,  szi, in the LOBD 
structures  [25]. 

A  few  remarks are in order here regarding the effectiveness 
of  such schemes. To  determine  this we need some useful 
criteria  by which to  compare  the  performance  of  optimum and 
the locally optimum  detectors, particularly in the limiting 
situations  of large sample size. The  concepts of Relative Effic- 
iency  (RE) and  Asymptotic Relative Efficiency  (ARE) as pro- 
posed by  Pitman [33]  and specified  in  detail  by Capon  [34] 
and Middleton [25,  351, as  well as others, provide the  needed 
basis for comparison.  For  example, Middleton’s generalized 
definitions  are,  for  our case: 

(i): The Efficiency of  the  test Hl vs. H z  by a  system y 
with non-zero  input signal intensity level ( S  > 0) and finite 
sample size N is, for a fiied P,, 

where (yl) denotes  the  mean  of  the  test  statistic y under  hypo- 
thesis H l ,  u1 the corresponding standard deviation, etc.  Equa- 
tions  (40) and  (41)  allow  us to calculate this  quantity  for our 
locally optimum  detector. 

(ii). The Relative Efficiency (RE)  of the  test Hl vs Hz 
by  system y 1  vs. that  by  systemy2 is then 

where Ni, i = 1,2, is the sample size for system y i  for some 
required level of performance. 

(iii). The Asymptotic Relative Efficiency (ARE) is,  for 
given  level S ,  given by 

If E ~ ~ ~ ~ ~ ( N ~ ,  N 2 ,  S)  < 1, then y z  is said to be more effi- 
cient than y l ,  and if the ARE < 1, then y 2  is  said to be 
asymptotically  more  efficient  than y l .  

In our case,  a  more  useful and equivalent  relation is 
simply 

( 4 3 4  

That is, the  RE simply tells us [for a given small signal level 

S and  required measure of performance P,] how  many  more 
samples ( N l )  system y 1  requires than  the  more efficient  sys- 
teri$2 (Levin and Kushnir [27] ). 

We have developed the means to  obtain a  good estimate of 
Nl for any small signal size and required P, for  the locally 
optimum  detector via (42). Obtaining N 2  (for the  optimum 
detector), however, is not  an easy matter, since all  we have 
here is  an upper  bound, ,which is likely to  be quite “loose” 
for small signal levels. However, we can  apply  a  CLT argu- 
ment  to  this  upper  bound  to  obtain an estimate of perform- 
ance for  the  optimum  detector, especially’ for small signals. 
This procedure is as follows: from Gallager [36],  Appendix 
5A, and Van Trees [13],  Sec.  2.7, we let 

so that  our  bound  (26),  obtained earlier, is 

where now CY* is the value of 01 for which /$a) = 0. In our 
case CY* was equal to  1/2,  cf. (22). Then an estimate of  per- 
formance, based on the CLT, is given (Van Trees, [13], Sec. 
2.7)  by 

1 (a*>2 a*J/5(olX> 
P, - exp [/A(@*) + -- ,ii(c~*)] erfc 

4 2 

Although (46)  can be used then to  obtain an estimate  of N z ,  
it requires the  computation of ii(a*). Direct differentiation 
of  CY) results in indeterminate forms for i.i(a*) for  our 
present case. Even so, the numerical  evaluation of j.i(a*), 
while rather involved, is straightforward. However, we are 
still left with estimates  (hopefully good)  of N1 and N 2 .  

VI. CONCLUDING REMARKS (Part I) 

Inasmuch as communications systems are seldom inter- 
fered  with by “classical” white Gaussian noise, the principal 
objective  of  this  paper (and Part I1 following) is to apply 
Middleton’s recently  developed  statistical-physical model  of 
“impulsive,” highly non-Gaussian interference  [4] to  signal 
dete’ction problems involving realistic electromagnetic inter- 
ference environments.  The  new, canonical interference  model 
used here is briefly  described (the Class A noise case [4] ) for 
the  solution of  these signal detection  problems,  and is shown 
to  be in excellent agreement with  experiment, as well. 

In general, optimum  and  threshold  optimum (LOBD) 
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detection algorithms  are obtained,  here canonically (i.e., 
independent of the  type of interference)  and  for particular 
signal waveforms, for  the  situation of coherent  binary  detec- 
tion,  and in  specific  detail for  three  common digital signaling 
waveforms: i.e., antipodal,  orthogonal,  and  ON-OFF keying. 
Quantitative  performance  bounds are also obtained  for these 
specific signaling cases in Class A noise. It is  well known  that 
to gain significant improvement over current (matched-filter) 
receivers (in Gauss noise), the  number  of  independent 
samples  of the received interference waveform must be large. 
Performance measures are accordingly obtained which are 
explicitly parametric  in sample-size, or equivalently in time- 
bandwidth  product.  Performance  of  the  currently  used,  sub- 
optimum (i.e., matched  filter) receivers is also evaluated and 
compared  with  that  of  the  optimum receiver in these  highly 
non-Gaussian (Class A) noise environments.  It is shown that 
substantial savings in signal power  and/or  spectrum space can 
be achieved if the  proper  optimum receivers are employed. 

Although physical realizations of  the  completely  optimum 
detection algorithms (for all signal levels) are not usually 
economically  achievable, the  corresponding locally optimum 
or  threshold receiver (LOBD’s) are derived and  their  per- 
formance  evaluated. These threshold receiver-structures are 
canonical  in nature in that  the form of  their  structure is inde- 
pendent  of  the statistical character  of  the  interference,  and 
of  particular Signal waveforms. 

In the  present  paper, all calculations of  performance are 
carried out with. the  pdf of the  interference in normalized 
form,  cf. (7) and (9); so that  the noise power is unity and the 
SNR is  given by  the signal power S. In actual  situations,  the 
performance of the  optimum  and locally optimum (LOBD) 
receivers is not a function of the  SNR  alone, because of  the 
required nonlinear’processing.  That  is,  for  problems  of active 
interest ,  the performance  algorithms  developed  here must use 
the  pdf  of  the  interference in unnormalized,  or absolute 
form, so that  performance (i.e., error probabilities)  will, in 
general, depend  on  the  absolute  interference level as well as 
on  the  SNR.  In  this sense, then, these optimum receivers are 
also adaptive; i.e., they  must  be able to  adjust to  the param- 
eters (level, Impulsive Index (A) ,  etc.)  of  the  interference. 

Finally, Part I1 following extends  the analysis to include 
various important  types  of  incoherent  reception. 

1. 

2. 

3. 

4. 

5.  
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